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Abstract
The semiclassical propagation of Gaussian wave packets by complex classical
trajectories involves multiple contributing and noncontributing solutions
interspersed by phase space caustics. Although the phase space caustics do not
generally lie exactly on the relevant trajectories, they might strongly affect the
semiclassical evolution depending on their proximity to them. In this paper,
we derive a third-order regular semiclassical approximation which correctly
accounts for the caustics and which is finite everywhere. We test the regular
formula for the potential V (x) = 1/x2, where the complex classical trajectories
and phase space caustics can be computed analytically. We make a detailed
analysis of the structure of the complex functions involved in the saddle point
approximations and show how the changes in the steepest descent integration
contour control both the contributing and noncontributing trajectories and the
type of Airy function that appears in the regular approximation.

PACS numbers: 03.65.Sq, 03.65.Nk

1. Introduction

The study of the semiclassical propagation of wave packets plays a very important role in
the understanding of the transition between classical and quantum dynamics. One of the
main goals of this study is to investigate how classical dynamical ingredients enter in the
semiclassical description of purely quantum properties, such as interference, tunnelling and
coherence. Also important is to understand how accurate the semiclassical formulae are and
for how long they remain reliable. The semiclassical propagation of wave packets is also a
widely used tool in modelling a great variety of phenomena in chemistry and physics. They
have been particularly important in investigations of quantum chaos [Tom91, Pro95, Sil02,
Tom03, Fie03, Rib04] and molecular dynamics [Tho04, Kay05].

The basic semiclassical formula for the time evolution of wavefunctions is the so-called
van Vleck propagator, which represents the semiclassical limit of the matrix element
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〈x|K̂(T )|x ′〉 = K(x, x ′, T ) of the evolution operator K̂(T ) = exp{−iĤT /h̄}:

Kvv(x, x ′, T ) = 1√
2πh̄

∑
classical paths

(
− ∂2S

∂x∂x ′

)−1/2

exp

(
i

h̄
S(x, x ′, T ) − iπ

4

)
. (1.1)

The classical quantities involved in this formula are the trajectories that propagate from x ′

to x in the time T, together with their actions S and the properties of their neighbouring
orbits, contained in the second derivative of S. The knowledge of Kvv(x, x ′, T ) allows the
semiclassical propagation of any initial state through the composition

ψsc(x, t) =
∫

Kvv(x, x ′, T )ψ(x ′, 0) dx ′. (1.2)

However, in order to be implemented, the above expression requires the calculation of a double
infinity of classical trajectories, since trajectories from x ′ to x have to be computed for all
values of x ′ and all values of x. Several methods have been proposed in the past years to
circumvent this difficulty, and two of them have stand out. The first method transforms the
double infinity of trajectories with mixed boundary conditions (x ′ at time zero and x at time T)
to another double infinity of trajectories with initial conditions (x ′ and p′ at time zero). These
are the so-called initial value representations (IVR). In this paper, we shall not consider IVR
methods and we refer to the recent reviews in [Tho04, Kay05] for more information on the
several variations of this technique, its accuracy and applications.

The second approach consists in performing the integration over x ′ directly using the
saddle point method [Hub88, Agu05]. This eliminates the need to find trajectories for all values
of x ′. Instead one considers only the few values that make the exponent stationary. However,
the stationary points are usually complex, and the underlying classical dynamics takes place
in a complexified phase space, where both position and momentum are complex variables.
The complex dynamics gives rise to the so-called noncontributing classical solutions, which
correspond to saddle points that cannot be reached by a contour of integration consistent with
Cauchy’s integral theorem. Of course, these points must be excluded from the evaluation
of semiclassical quantities and criteria based on physical reasoning have been proposed to
systematically separate them from the contributing solutions [Ada89, Shu95, Shu96, Oni01].
These criteria are much simpler to apply than the direct verification of Cauchy’s theorem,
which, in general, is a prohibitive task. A second problem that usually appears in asymptotic
evaluations of quantum propagators is that of caustics. At these points, the common second-
order semiclassical expressions diverge and higher order expansions are necessary.

The purpose of this work is twofold. First, we derive an improved semiclassical expression
for the propagation of wave packets that is well behaved in the vicinity of phase space caustics.
Second, we present a detailed application of the complex trajectories formalism, developed in
[Hub87, Hub88, Agu05], to the scattering of a Gaussian wave packet by the one-dimensional
potential V (x) = 1/x2. This system is analytically solvable but nontrivial, presenting both
noncontributing solutions and caustics. We test our new semiclassical expression for this
problem and we show that the improved formula indeed removes the incorrect peaks produced
by the caustics, leading to results that are in excellent agreement with quantum calculations.
The application of the new formula involves a careful analysis of the complex plane of the
action function, in order to choose the correct steepest descent integration contour. The choice
of contour is what controls the contributing and noncontributing trajectories and the type of
Airy function that appears in the regular approximation.

This paper is organized as follows: in the next section, we briefly review the theory
presented in [Agu05] and in section 3 we discuss the possible higher order expansions that
must be carried out in order to avoid the spurious effects introduced by the caustics. In
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section 4, we derive one particular approximation in which the corrections are totally contained
in a multiplicative factor that regularizes the quadratic formula. Section 5 contains a detailed
application of the formalism to the case of a Gaussian wave packet moving in the potential
V (x) = 1/x2 and in section 6 we summarize our conclusions.

2. Semiclassical propagation of wave packets with complex trajectories

The time evolution of a Gaussian wave packet in the coordinate representation can be
written as

ψ(x, T ) = 〈x|K̂(T )|z〉 (2.1)

where

〈x|z〉 = π− 1
4 b− 1

2 exp

[
− (x − q)2

2b2
+

i

h̄
p(x − q/2)

]
(2.2)

and K̂(T ) = e−iĤT /h̄ is the evolution operator. The canonical coherent state |z〉 is defined by
the eigenvalue equation â|z〉 = z|z〉, where â = (q̂/b + ip̂/c)/

√
2 is the annihilation operator

and z = (q/b + ip/c)/
√

2 is complex. The real numbers q and p are the mean values of
position and momentum, respectively, and the quantities b = √

2�q and c = √
2�p are

the corresponding uncertainties [Kla85]. The right-hand side of equation (2.1) can also be
interpreted as a ‘mixed propagator’, with a coordinate bra on the left and a coherent state ket
on the right.

A semiclassical expression for the wavefunction (2.1) was recently obtained [Agu05]
using the van Vleck formula

〈x|K̂(T )|x ′〉vv = 1

b
√

2πmqp

exp
( i

h̄
S(x, x ′, T ) − iπ

4

)
, (2.3)

where a sum over classical trajectories is assumed. Earlier derivations based on different
assumptions can be found in [Hub87, Hub88]. In this equation, S is the action of the (real)
trajectory connecting x ′ and x in the time T and mqp is an element of the tangent matrix
defined by (

δxT

b

δpT

c

)
≡

(
mqq mqp

mpq mpp

)(
δx0
b

δp0

c

)
, (2.4)

where (δx0, δp0) are small initial deviations from the classical trajectory and (δxT , δpT ) are
the corresponding final deviations in the linear approximation. The elements of m can be
written in terms of the second derivatives of the action as follows:

∂2S

∂x0
2

= c

b

mqq

mqp

,
∂2S

∂x0∂xT

= − c

b

1

mqp

and
∂2S

∂xT
2

= c

b

mpp

mqp

. (2.5)

A fourth relation is given by det(m) = 1. The semiclassical approximation of the mixed
propagator (2.1) can be calculated from

〈x|K̂(T )|z〉 ≈
∫

〈x|K̂(T )|x ′〉vv〈x ′|z〉 dx ′ ≡ ψsc(x, T ). (2.6)

The evaluation of this integral by the steepest descent method yields [Agu05]

ψsc(x, T ) = 1

b1/2π1/4

1√
mqq + imqp

exp

(
i

h̄
S(x, T ; x ′

0, 0) +
i

h̄
p(x ′

0 − q/2) − (x ′
0 − q)2

2b2

)
,

(2.7)
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where one should sum over the, usually complex, contributing trajectories satisfying
Hamilton’s equations and the boundary conditions

x ′(0)

b
+ i

p′(0)

c
= q

b
+ i

p

c
and x ′(T ) = x. (2.8)

To get the right phase in the semiclassical propagator one must follow the phase of the
pre-factor from t = 0 to t = T .

To avoid confusion with the labels x and z of the wave packet, we have used primed
letters x ′ and p′ to refer to the time evolution of the classical trajectories. In this notation, the
Hamiltonian is H = p′2/2 + V (x ′) and a trajectory is represented by x ′(t) and p′(t). We also
define x ′(0) = x ′

0, p
′(0) = p′

0 and x ′(T ) = x ′
T .

The mixed boundary conditions equation (2.8) can be dealt with using a procedure
introduced by Klauder and first applied to a nontrivial system by Adachi [Ada89] for the
coherent states propagator. It consists of writing the initial phase space points as

x ′
0 = q + w and p′

0 = p + ikw, (2.9)

where w = α + iβ is a complex number and k = c/b. The first condition in (2.8) is
automatically satisfied for any value of w. Propagating the initial points (2.9) via Hamilton’s
equations for all w’s leads to a mapping between the complex planes w and x ′

T (w):

w −→ x ′
T (w), (2.10)

where x ′
T (w) represents the final complex coordinate. This mapping is conformal except

possibly at isolated points that can be critical points, where dx ′
T (w)/dw = 0 or singular

points, where x ′
T (w) → ∞. We will see in subsequent sections that the critical points of the

mapping (2.10), which we call caustics, correspond to the locations where the semiclassical
wave functions diverge, i.e., dx ′

T (w)/dw = 0 ⇒ ψsc → ∞. In order to satisfy the second
condition in (2.8), we determine the points in the w-plane for which Im[x ′

T (w)] = 0. Note that
x ′ is now a complex variable, due to the analytic extension, but x remains as a real quantity.
The sets of points obtained at the end of this process are the complex classical solutions.

Formula (2.7), the ‘bare semiclassical formula’, gives a good description of the quantum
wavefunction [Agu05] provided we eliminate the noncontributing trajectories [Ada89, Rub95]
and if the effect of the caustics, where the pre-factor diverges, can be neglected. A practical
method to circumvent the noncontributing trajectory problem was proposed by Adachi [Ada89]
and has been shown to work well in previous applications [Ada89, Rub95, Rib04, Agu05]. The
divergence of the semiclassical propagator at the caustics, however, requires an improvement
in the semiclassical formula beyond the quadratic approximation. In this paper, we derive such
a semiclassical approximation for the mixed propagator and test it for the one-dimensional
potential V (x ′) = 1/x ′2, where all complex trajectories and caustics can be determined
analytically.

3. Third-order corrections

The first step to obtain a higher order semiclassical approximation for the mixed propagator
is to identify which kind of expansion must be made. To do so, let us consider the following
integration: ∫

e
i
h̄
F (x ′) dx ′, (3.1)

where F has two saddle points x ′
+ and x ′

−, for which F ′ = 0, and one point x ′
c where F ′′ = 0,

which corresponds to a caustic. Indeed, a stationary phase approximation of the above
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x´c
x´+

x´–

Figure 1. Illustration of saddle point families where the superposition between the relevant regions
of integration can be ignored. In this case, one can add the contributions from x′

+ and x′−.

integral with the exponent expanded to second order around the saddle points is proportional
to (F ′′)−1/2. Such an approximation diverges only if the saddle points coalesce at x ′

c, but
spurious peaks may appear if x ′

± are too close to x ′
c. We denote the vicinities of x ′

+ and x ′
−

where the contribution to the integral (3.1) is relevant by D+ and D−, respectively. Two distinct
situations can occur:

(a) There is no relevant superposition between the regions D+ and D−, that is, D+ ∩ D− ≈ {∅}.
In this case, the distance between x ′

+ and x ′
− is big enough so that one can make expansions

around each point and sum up the two contributions without significant interference or
redundancy. This situation is schematically shown in figure 1. We can obtain an estimate
for the validity of this procedure by looking at such an expansion in the vicinity of one of
the saddle points. Let, for example, F+ denote the expansion of F(x) around x ′

+:

F+(x
′) ≈ F(x ′

+) + 1
2F ′′(x ′

+)(x
′ − x ′

+)
2 + 1

6F ′′′(x ′
+)(x

′ − x ′
+)

3. (3.2)

Evaluating the above expression at the other saddle point and noting that F ′′ is small for
x± close to x ′

c, we get

F+(x
′
−) ≈ F(x ′

+) + 1
6F ′′′(x ′

+)(x
′
− − x ′

+)
3. (3.3)

Therefore, if (1/6h̄)F ′′′(x ′
+)(x

′
− − x ′

+)
3 ≈ 1 the function exp{iF/h̄} approximately

completes one cycle as one moves from x+ to x− and the part of integration (3.1)
corresponding to x ′

+ tends to vanish in the region x ′ ≈ x ′
−. Under these circumstances,

we can assure that the individual contributions calculated from a third-order expansion
can be added. More explicitly, we should have

|x ′
+ − x ′

−| �
(

6h̄

|F ′′′|
)1/3

. (3.4)

(b) The other possibility occurs when D+ and D− overlap and one cannot simply expand F for
each saddle point and sum up the individual contributions because this procedure would



9322 F Parisio and M A M de Aguiar

x´c
x´+

x´–

Figure 2. Illustration of saddle point families where the superposition between the relevant regions
of integration cannot be ignored. In this case, summing the contributions of the critical points
leads to inaccurate results.

compute twice the part referring to the region D+ ∩ D− �= {∅}. One possible solution is
to expand F around the caustic x ′

c:

F(x ′) ≈ F(x ′
c) + F ′(x ′

c)(x
′ − x ′

c) + 1
6F ′′′(x ′

c)(x
′ − x ′

c)
3. (3.5)

In this regime, the above expression can be used to get a good estimation for the integration
(3.1) since it is also valid in the vicinity of x ′

+ and x ′
− (see figure 2). This approximation

is called transitional, because it is valid only in the vicinity of x ′
c and must be replaced

by another kind of formula (typically a second-order approximation) far from this region.
An example of this procedure is given by the connection formulae in WKB theory. In
appendix A, we obtain the transitional approximation for the mixed propagator presented
in equation (2.7).

Finally, there are third-order uniform approximations that are valid in all situations
mentioned above. The price to be paid is a loss of accuracy in the regions away from
the caustics with respect to the pure quadratic approximation [Ber67, Rib05]. We shall not
consider this type of approximation in this paper.

4. Regular semiclassical approximation

The classical trajectories involved in the semiclassical propagation of wave packets do not
generally have caustics. However, phase space caustics lying on nearby classical trajectories
(that do not necessarily contribute to the semiclassical wavefunction) might strongly affect
the semiclassical evolution depending on their proximity to them. In this section, we assume
that the distance between these caustics and the contributing trajectories are not too small, so
that condition (3.4) is fulfilled. This seems to be the most common situation for wave packets
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projected in the coordinate or momentum representations [Hub88]. We write equation (2.6)
as

�sc(x, T ) =
∫ +∞

−∞

e−iπ/4 exp{iF/h̄}
b3/2π1/4

√
2πmqp

dx ′, (4.1)

where

F(x, T ; x ′, 0) = S(x, T ; x ′, 0) + p(x ′ − q/2) + ih̄
(x ′ − q)2

2b2
. (4.2)

We shall carry out a third-order expansion of F analogous to that in equation (3.2). In order
to distinguish the resulting formula from the transitional or uniform approximations, we shall
term it regular semiclassical approximation and denote it by the capital letter �sc.

We expand F up to third order in the difference (x ′ − x ′
0), where x ′

0 is a saddle point
determined by

i

h̄
F ′ ≡ i

h̄

∂F

∂x ′ = i

h̄
(p − p′) − (x ′ − q)

b2
= 0, (4.3)

with

p′(x, x ′, T ) = − ∂S

∂x ′ . (4.4)

Note that the stationary condition gives the first complex boundary condition in (2.8) with
p′

0(x, T ) = p′(x, x ′
0, T ). The second- and third-order derivatives are

i

h̄
F ′′ ≡ i

h̄

∂2F

∂x ′2 = − i

h̄

∂p′

∂x ′ − 1

b2
, (4.5)

and
i

h̄
F ′′′ ≡ i

h̄

∂3F

∂x ′3 = − i

h̄

∂2p′

∂x ′2 . (4.6)

Inserting

F ≈ F(x ′
0) + 1

2F ′′(x ′
0)(x

′ − x ′
0)

2 + 1
6F ′′′(x ′

0)(x
′ − x ′

0)
3 (4.7)

into (4.1) and evaluating the pre-factor at the saddle point [Bar01] we obtain

�sc(x, T ) = e−iπ/4 exp{iF(x ′
0)/h̄}

b3/2π1/4
√

2πmqp

∫
C

exp

{
iA(x ′ − x ′

0)
2 +

iB

3
(x ′ − x ′

0)
3

}
dx ′, (4.8)

where

A = F ′′(x ′
0)

2h̄
= 1

2b2

(
mqq + imqp

mqp

)
x ′

0

, (4.9)

and

B = F ′′′(x ′
0)

2h̄
= 1

2b2

∂

∂x ′

(
mqq

mqp

)
x ′

0

. (4.10)

The original integration contour (real axis) must be deformed into a new contour C in order to
pass through the saddle point x ′

0 while keeping the integral (4.8) bounded. It is convenient to
write
B

3
(x ′ − x ′

0)
3 + A(x ′ − x ′

0)
2 = 1

3
[γ (x ′ − x ′

0) + σ ]3 + µ[γ (x ′ − x ′
0) + σ ] +

2

3
σ 3, (4.11)

with

γ = B1/3, σ = A

B2/3
, µ = − A2

B4/3
, (4.12)
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C1

C3 C2

Figure 3. Possible contours for the integration of equation (4.15).

where, without loss of generality, B1/3 stands for the principal root of γ 3 = B (see
appendix B). Rewriting the integral in (4.8) in terms of the new variable t = γ (x ′ − x ′

0) + σ ,
we obtain∫

C
exp

{
iA(x ′ − x ′

0)
2 +

iB

3
(x ′ − x ′

0)
3

}
dx ′ = 1

B1/3
exp

(
i
2A3

3B2

)
I

(
− A2

B4/3

)
, (4.13)

with

I (s) ≡
∫
C

exp

{
i

[
1

3
t3 + st

]}
dt. (4.14)

Since I has to be bounded, the new integration contour C must be deformable into one of the
curves Cj shown in figure 3. Therefore, we are lead to identify the function I (s) with either
the Airy function, also denoted by f1, or one of the related functions f2 or f3 [Ble86]:

I (s) = 2πfj (s) ≡
∫
Cj

exp

{
i

[
1

3
t3 + st

]}
dt. (4.15)

The semiclassical wavefunction becomes

�sc(x, T ) = e−iπ/4 exp{iF(x ′
0)/h̄}

b3/2π1/4
√

2πmqp

× 1

B1/3
exp

(
i
2A3

3B2

)
I

(
− A2

B4/3

)
. (4.16)

Note that, in contrast to formula (2.7), no divergence occurs at A = 0. Rearranging the terms
and using relation (4.9) one can write the above expression in a more suggestive way:

�sc = e−π i/4

√
π

A1/2

B1/3
exp

(
i
2A3

3B2

)
I

(
− A2

B4/3

)
× 1

b1/2π1/4

exp{iF(x ′
0)/h̄}√

mqq + imqp

. (4.17)

The first term involves only powers of ζ ≡ A1/2/B1/3 and the second one is exactly ψsc, so
that the above formula factorizes into

�sc(x, T ) = χ(ζ )ψsc(x, T ), (4.18)

with

χ(ζ ) ≡ e−πi/4

√
π

ζ exp

(
i
2ζ 6

3

)
I (−ζ 4). (4.19)

This way of writing �sc makes the role of χ clear. It is a correction which, by consistency,
must be relevant only in the vicinity of the caustics, where ζ ≈ 0 and ψsc fails to describe the
quantum wavefunction. More precisely:
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(a) On the caustics �sc must be bounded. By inspection of equation (4.16) we see that this
requirement is indeed satisfied.

(b) Far from the influence region of the caustics we must have �sc → ψsc. In this regime,
|ζ | ∝ |A1/2| � 1 (if B �= 0). So we have to impose

χ → 1 for |ζ | → ∞(B �= 0). (4.20)

In terms of the integral I (−ζ 4) we must have

I (−ζ 4) ∼ eπ i/4√πζ−1 exp

(
−i

2ζ 6

3

)
if ζ → ∞, (4.21)

which follows directly from definition (4.19). At this point, we still have two problems to
cope with. First, we must choose one of the six possible contours ±Cj for each x. Since the
structure of valleys and hills of the integrand in (4.14) depends on x through ζ , there is no
reason for the contour to be the same for all positions x. Second, given the correct contour we
must be careful in choosing the physically consistent branches that appear in the asymptotic
expansion of χ .

Let us start with the second problem by assuming that we know the correct contour of
integration. Given the contour we must keep only the branches of χ that satisfy the condition
(4.20). Let us initially suppose that I (−ζ 4) = ±2πAi(−ζ 4), i.e., let us assume that C = ±C1.
Since 2πAi(s) ∼ √

πs−1/4 exp(−2s3/2/3) for s → ∞ if arg(s) �= π [Olv74, Ble86], we
can write

2πAi(−ζ 4) ∼ √
π [(−ζ 4)1/2]−1/2 exp

(
−2[(−ζ 4)1/2]3

3

)
for ζ → ∞, (4.22)

if arg(−ζ 4) �= π . With the convenient choice of roots

(−ζ 4)1/2 = −iζ 2 ⇒ [(−ζ 4)1/2]3 = iζ 6 and [(−ζ 4)1/2]−1/2 = ±eiπ/4ζ−1, (4.23)

we get the right limit (4.20). As we remarked, there is no reason a priori for this identification
to be the right choice in all cases. In fact, we can immediately verify that it is insufficient
because it leads to χ �= 1 in the limit ζ → ∞ when ζ 4 is real and positive. Now we recall that{

2πf2(s) ∼ −i
√

πs−1/4 exp(2s3/2/3)

2πf3(s) ∼ i
√

πs−1/4 exp(2s3/2/3)
(4.24)

for s → ∞. It is easy to show that if we take I (−ζ 4) = 2πf2(−ζ 4) or I (−ζ 4) = 2πf3(−ζ 4)

we also obtain the correct limit, provided that (−ζ 4)1/2 = iζ 2 ⇒ [(−ζ 4)1/2]3 = −iζ 6 and
[(−ζ 4)1/2]−1/2 = ±e−iπ/4ζ−1. We stress that all these previous identifications are possible
since the only change from one particular fj to another is the contour of integration, with the
integrand in (4.13) remaining unchanged. All possibilities must be taken into account in order
to satisfy the condition (4.20) for all values of x. If we keep the choice of roots fixed by (4.23),
we can write the correction factor as

χ(ζ ) =




+2
√

π e−π i/4ζ exp(i2ζ 6/3)Ai(−ζ 4) if C ∼ ±C1

+2
√

π eπ i/4ζ exp(−i2ζ 6/3)f2(−ζ 4) if C ∼ ±C2

−2
√

π eπ i/4ζ exp(−i2ζ 6/3)f3(−ζ 4) if C ∼ ±C3.

(4.25)

All we have to do now is to select one of the expressions above for each x. This, of course,
corresponds to the choice of the correct contour that must be made through a careful analysis
of the topology of the complex action along with the determination of the relevant steepest
descent contours (see subsection 5.5 and section 6).
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5. Application: wave packet bouncing off a smooth wall

In this section, we study in detail the semiclassical scattering of a Gaussian packet by the
potential

V (x ′) = 1

x ′2 , (5.1)

which represents a smooth wall that goes to infinity at x ′ = 0 (see [Man96] for a calculation
involving real trajectories). This potential is also the centrifugal part of the effective potentials
appearing in the radial equations of central force problems. The classical trajectories for this
potential can be obtained analytically, which enable us to obtain explicit expressions for the
semiclassical wavefunctions ψsc and �sc in terms of the contributing families in the w-plane.
Despite the simplicity of the system, it presents both noncontributing trajectories and caustics,
together with a peculiar topology in the complex plane of the action function because of the
singularity of the potential at x ′ = 0.

5.1. Classical solution

The solution of the equations of motion for x ′ > 0 is given by

x ′
T =

√
2T 2

x ′2
0

+ (p′
0T + x ′

0)
2. (5.2)

Using equations (2.9) this can also be written as

x ′2
T (w) = 2T 2

(q + w)2
+ [(p + ikw)T + (q + w)]2. (5.3)

Note that we can work with either x ′2
T (w) or x ′

T (w), since both mappings w −→ x ′
T (w) and

w −→ x ′2
T (w) have the same geometrical structure in the region Re

[
x ′2

T (w)
]

� 0.
The function x ′2

T (w) is analytic everywhere, except at the isolated singular point w = −q.
The condition Im[x ′

T (w)] = 0 is equivalent to

Im
[
x ′2

T (w)
] = 0 and Re

[
x ′2

T (w)
]

� 0, (5.4)

where

Re
[
x ′2

T (w)
] =

[
(KT + R)2 − (kαT + β)2 +

2T 2(R2 − β2)

(R2 + β2)2

]
, (5.5)

Im
[
x ′2

T (w)
] = 2

[
(KT + R)(kαT + β) − 2T 2βR

(R2 + β2)2

]
, (5.6)

k = c/b, R = q + α and K = p − kβ.
In our numerical calculations, we have placed the wave packet at q = 2.0 with p = −0.5

and b = 0.8. We also set h̄ = 0.3 ⇒ c ≈ 0.37 and k ≈ 0.47 (arbitrary units). A natural time
scale for this problem is given by the classical turning time of a particle with initial position q
and initial momentum p:

T = − q3p

2 + q2p2
. (5.7)

With our choice of parameters, we get T ≈ 1.33.
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Figure 4. Curves of Re[x′2
T ] = const and Im[x′2

T ] = const for the propagation times: (a) T = 0.01,
(b) T = 0.5, (c) T = 1.0 and (d) T = 1.5. The four caustics are distinguishable as defects in the
reticular pattern. Their approximate coordinates in (d) are (−3.0, 0.4), (−2.2,−1.1), (−1.2, 1.3)

and (−0.5,−0.1). The flower-like central structure is due to strong oscillations around the singular
point (−2, 0).

5.2. Caustics

The mapping w −→ x ′
T (w) is conformal except at the singular point and at the caustics. The

number and dynamic properties of these points in the present system are quite distinct from
the previous ones studied in the literature [Ada89, Rub95]. The critical points are given by
dx ′

T (w)/dw = 0, i.e.,

(q + w)3[(1 + ikT )w + pT + q] = 2T 2

1 + ikT
, w �= −q. (5.8)

There are, therefore, only four caustics in the w-plane for all values of T �= 0 (see figure 4).
When T = 0 this equation becomes simply (q + w)4 = 0 which tells us that these points do
not come from infinity as in most cases [Rub95] but from the singular point w = −q. This
makes the effect of the caustics appear very soon in the wave packet propagation. On the
other hand, in the limit T → ∞ the same equation reads (q + w)3(p − ikw) = 2/ik, that is,
the caustics tend to a static configuration in the w-plane. This static configuration depends on
(q, p) and on the ratio k = c/b. All these features can be seen in figure 4 where curves of
constant value of Re

[
x ′2

T (w)
]

and Im
[
x ′2

T (w)
]

are shown for different times. Figure 4(a) shows
the initial stage with T = 0.01. Note that, except by the immediate vicinity of the singular
point, the arrangement of lines is completely regular. The lines cross at right angles due to
the conformal property of the mapping (2.10). For T = 0.5 (figure 4(b)) the pattern is more
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complicated and a flower-like structure appears, revealing the strong oscillations around the
singular point. The four caustics are clearly distinguishable as defects in the reticular pattern
in figures 4(c) and (d) for T = 1.0 and T = 1.5, respectively.

5.3. Complex action and tangent matrix

The complex action S can also be calculated explicitly and is given by

S = 1√
2
[Q(T ) − Q(0)] −

√
2 tan−1[Q(T )] +

√
2 tan−1[Q(0)], (5.9)

where

Q(t) =
√

2

2

[(
2

x ′2
0

+ p′2
0

)
t + x ′

0p
′
0

]
. (5.10)

In order to identify the contributing and noncontributing solutions it is convenient to separate
S in real and imaginary parts. After some algebra, we get

Re[S] = 1

2

[
K2 − k2α2 +

2(R2 − β2)

(R2 + β2)2

]
T

−
√

2

2
tan−1

[
2 Re[Q(T )]

1 − |Q(T )|2
]

+

√
2

2
tan−1

[
2 Re[Q(0)]

1 − |Q(0)|2
]

, (5.11)

and

Im[S] =
[
kαK − 2βR

(R2 + β2)2

]
T −

√
2

2
ln

[√
(1 − |Q(T )|2)2 + 4(Re[Q(T )])2

1 + |Q(T )|2 − 2 Im[Q(T )]

]

+

√
2

2
ln

[√
(1 − |Q(0)|2)2 + 4(Re[Q(0)])2

1 + |Q(0)|2 − 2 Im[Q(0)]

]
. (5.12)

In the above expressions, the branches were chosen such that S = 0 for T = 0. The elements
mqq and mqp of the tangent matrix can be obtained from the variation of x ′

T :

δx ′
T = 1

x ′
T

(
p′

0T + x ′
0 − 2T 2

x ′3
0

)
δx ′

0 +
T

x ′
T

(p′
0T + x ′

0)δp
′
0. (5.13)

We obtain

mqq + imqp = 1

x ′
T

[
(p′

0T + x ′
0)(1 + ikT ) − 2T 2

x ′3
0

]
. (5.14)

As expected, by setting mqq + imqp = 0, we recover the caustic equation (5.8).

5.4. The semiclassical wavefunction

Replacing the action and tangent matrix into equation (2.7), we get

ψsc = π−1/4b−1/2x1/2√
(p′

0T + x ′
0)(1 + ikT ) − 2T 2/x ′3

0

exp{−Im[F ]/h̄} exp{i Re[F ]/h̄} (5.15)

where we have set x ′
T = x, see (2.8), and

Re[F ] = Re[S] + p
(
R − q

2

)
− h̄αβ

b2
, (5.16)

and

Im[F ] = Im[S] + pβ +
h̄

2b2
(α2 − β2). (5.17)
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Figure 5. (a) Contributing families for T = 0.5. The open circles mark the location of the points
which are mapped into x′

T = x = 0. The thin lines have Im[F ] < 0. In (b), we show the individual
contributions of WI, WII and WIII to the semiclassical wavefunction. Note that no interference
appear in these isolated functions.

Equation (5.15) also depends on x implicitly through the contributing families, which can be
regarded as parametric curves with x as the parameter. Note that ψsc → 0 for x → 0 as
expected.

In order to apply formula (5.15) we have to solve equations (5.4) to get the curves in the
w-plane which correspond to trajectories satisfying the proper boundary conditions. There
are four such families, which we label by WI, WII, WIII and WIV. These families are shown
in figure 5(a) for T = 0.5. We call WI the main family [Agu05] because it contains the
real trajectory through the point (α, β) = (0, 0). As pointed out by Adachi [Ada89], we
must define an allowed region in the w-plane and restrict the computation of the semiclassical
propagator to the contributing families which are inside this region. Roughly speaking, this
procedure corresponds to the elimination of the inadmissible saddle points that frequently
appear in stationary phase calculations. In the allowed region the following properties have to
be satisfied:

(i) Trajectories with Im[F ] < 0 must be removed. This avoids divergence of exp{−Im[F ]/h̄}
in the limit h̄ → 0 [Ada89].

(ii) Trajectories with Im[FJ ](x) > 0 but Im[FJ (x)] < Im[FI (x)] (where J = II, III, IV)
also have to be removed to guarantee that, as h̄ → 0, the main family always gives the
dominant contribution [Agu05].

(iii) The discontinuity introduced by the sudden removal of a secondary contribution must be
minimized [Ada89].

Figure 5(a) shows that WII and WIII have parts where Im[F ] < 0 (shown with a thin
line). These intervals cannot be considered in the semiclassical calculations. In fact, criteria
(ii) and (iii) make the noncontributing intervals extend into regions of Im[F ] > 0. Note that
all families shown in figure 5 in the w-plane are mapped into the whole parametric x interval
(0, +∞). However, while families I and III are semi-infinite, WII and WIV occupy only
a small limited region in the w-plane. The open circles correspond to points mapped into
x ′

T = x = 0. In figure 5(b), we show the individual contributions of WI, WII and WIII to
the semiclassical wavefunction (5.15). The main family gives the most important quantitative
contribution, WII and WIII give small but still relevant contributions, while WIV is negligible.
Note that the wavefunction computed with a single contribution does not show interference
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Figure 6. Curves Im[F ] = const < 0 for (a) T = 0.01, (b) T = 0.5, (c) T = 1.0 and
(d) T = 1.5. Note that in (a), besides the large forbidden regions, there are also small forbidden
regions surrounding the singular point. These initially small regions expand in (b) and then coalesce
in (c) and (d), where two disconnected allowed regions can be seen. The family I lies on the right
region, whereas all other families are on the left-hand side.

patterns. In the next subsection, we shall show an explicit example of the integration
contour being deformable so as to include the family WII in the ‘allowed region’ but not
outside it.

Figure 6 shows the regions where Im[F ] � 0 for the same times as in figure 4. We remark
that even for very early propagation times (figure 6(a)), there are forbidden regions around
the singular point w = −2.0. This is a signature of the presence of the caustics that originate
from this point. These initially small regions expand (figure 6(b)) and as time goes by they
coalesce to form the pattern displayed in figures 6(c) and (d). This pattern also tends to a
static configuration for T � T .

Once we have found the four families and evaluated their individual contributions, we
proceed to compute their composition in order to get ψsc. In figure 7(a), we display the initial
wave packet. In figures 7(b)–(d) we show the semiclassical and exact quantum mechanical
(denoted by ψqm) evolution of the initial packet for different times. In particular, the result
displayed in figure 7(b) is the composition of the contributions shown in figure 5(b). The
accuracy of formula (2.7) is very good for T = 0.5 and T = 1.0, where one can see the
interference pattern of the quantum mechanical result precisely reproduced semiclassically. As
a general rule, we observe that interference appears in the semiclassical formula only through
the combination of the individual contributions. It is worth noting that the normalization N
of the semiclassical wavefunction is very good in figure 7(b) (N ≈ 1.000) and figure 7(c)
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Figure 7. Exact (dashed line) and semiclassical (full line) probability densities for (a) T = 0,
(b) T = 0.5, (c) T = 1.0 and (d) T = T = 1.33. The semiclassical results are very accurate in
(b) and (c), but the effect of the caustic located between the families I and II considerably decreases
its accuracy in (d).

(N ≈ 0.987). For T � T , the increase in the pre-factor due to the caustics causes a
worsening in the normalization of the semiclassical result, as can be seen in figure 7(d), where
T = T = 1.33 and N ≈ 1.092. Similar effects can be observed in figure 9 of [Hub88] and
also in figures 4(c) and (d) of [Agu05].

5.5. Steepest descent contours and Stokes phenomenon

So far we have used criteria (i)–(iii) to decide on the inclusion or elimination of a particular
family in the semiclassical formula. In this subsection, we shall carry out an analysis of the
saddle point evaluation of integral (4.1). With the help of the Klauder–Adachi mapping we
have calculated complex trajectories with given initial conditions (x ′

0, p
′
0). Now, in order to

determine the van Vleck kernel, we must satisfy the boundary conditions x ′(0) = x ′ and
x ′(T ) = x. From the classical solution

x ′(T ) =
√

2T 2

x ′2 + (p′(0)T + x ′)2, (5.18)

it follows that

p′
±(0) = −x ′

T
± 1

T x ′
√

x2x ′2 − 2T 2 ≡ −x ′

T
± 1

T x ′
√
Y. (5.19)
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Figure 8. Phases of Y in P 1 for T = 0 (a) and T > 0 (b), and P 2 for T = 0 (c) and T > 0 (d).
The colours vary from black to white as the phase changes from 4π to 0.

Therefore, there are two initial momenta which are compatible with the van Vleck boundary
conditions. From expression (1.1), we see that equation (4.1) is in fact a sum of two integrals
whose exponents F must be evaluated for the two corresponding signs in equation (5.19). The
saddle point evaluation of these integrals requires an analytic extension of x ′ to the complex
plane x ′ → Re[x ′] + i Im[x ′]. We call the complex x ′-planes where these two integrations take
place P 1 and P 2, respectively. In order to avoid discontinuities in the complex momentum
we have to define the phase of Y modulo 4π , due to the square root in equation (5.19). To
do so we note that Y = x2x ′2 for T = 0. This implies that points in the x ′-plane with
Im[x ′] > 0 correspond to arg(Y) in the interval (0, 2π ] and points with Im[x ′] < 0 lead
to arg(Y) in the interval (2π, 4π ]. The phase of Y for T = 0 is shown in the x ′-plane
in figure 8(a) for the positive root and in figure 8(c) for the negative root (which can be
obtained by adding 2π to the phase of Y). Of course, the 0 ↔ 4π jumps do not lead to
any discontinuity in

√
Y . Figures 8(b) and (d) show arg(Y) for T > 0. The situation is

now different, since a branch cut develops, leading to a π ↔ 3π jump and causing an abrupt
change in the sign of

√
Y . The continuity of sing requires changing sheets P 1 ↔ P 2.

Therefore, the overall structure of the complex plane leads to a continuous variation of
the exponent F provided one changes sheets when crossing the branch cut segment, given
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Figure 9. Contour plot of −Im[F ] for x = 1.43 and T = 1.33 in P 2 (a) and P 1 (b). The cutting
segment is shown by dotted line. Darker regions correspond to larger positive values and lighter
regions to larger negative values.

by the real interval [−√
2T/x,

√
2T/x]. The exponent F(x, T ; x ′, 0), equation (4.2), with

S = [Q(T ) − Q(0)]/
√

2 − √
2 tan−1[Q(T )] +

√
2 tan−1[Q(0)], is also defined in P 1 + P 2.

This can be seen explicitly by expressing Q(t) in terms of x and x ′:

Q(0) = 1√
2T

(−x ′2 ± √
Y), Q(T ) = 1√

2T
(x2 ∓ √

Y). (5.20)

Once we know the topological structure of P 1 + P 2 we can address the question of sudden
removal of secondary families in the wavefunction. As an example, we consider the removal
of family II for T = T = 1.33 (corresponding to figure 7(d)), around the point x = 1.33.
In figure 9, we present contour plots of −Im[F ] for x = 1.43 and T = 1.33, where WII still
contributes to ψsc. We show valleys (lighter regions) and hills (darker regions) along with the
steepest ascent and steepest descent (labelled by the capital letter D) contours passing through
each saddle point. We see that points III (white) and IV (black) belong to P 2 (figure 9(a))
and points I (black) and II (white) belong to P 1 (figure 9(b)). Since the potential is infinite
for x ′ = 0 and the initial wave packet is centred at x ′ = q = 2 it is not surprising that the
points for which x ′ > 0 (I and II) give the most relevant contributions. Since we have two
integrations one must choose the contours that are deformable into two real lines. One of
them is DIIIa + DIIIb (in P 2) which is responsible for the inclusion of III (figure 9(a)), and
the other is DIIa + DIIb + DIa + DIb (in P 1) justifying the inclusion of II and I (figure 9(b)).

Let us now study the same contour plots for x = 1.23 and T = 1.33, where WII
is no longer included in the semiclassical calculation according to criteria (i)–(iii). This
configuration is depicted in figure 10. The picture in P 2 is quite similar to the previous
case and we still have III included in the calculation of the semiclassical wavefunction via
DIIIa + DIIIb, as shown in figure 10(a). In P 1, things look different because the branch
cut segment (shown in dotted line) is traversed by DIIb, which means that the upper part of
this curve, with Im[x ′] > 0, must be placed in P 2. It turns out that the upper part of DIIb
is a steepest ascent line in P 2, since in this sheet the divergence at the origin is positive for
Im[x ′] → 0+ and negative for Im[x ′] → 0−, the inverse occurring in P 1. Therefore, DIIb can
no longer be regarded as a valid contour of integration. This means that II must not be included
in the calculation of ψsc. The second real line is now deformable in DIVa +DIVb +DIa +DIb
(in P 2 and P 1). This is a manifestation of the so-called Stokes phenomenon, namely, the
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Figure 10. Contour plot of −Im[F ] for x = 1.23 and T = 1.33 in P 2 (a) and P 1 (b). The cutting
segment, shown by dotted line, is crossed by DIIb. Darker regions correspond to larger positive
values and lighter regions to larger negative values.
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Figure 11. Parts of families I and II that correspond to the region in which the bare semiclassical
formula fails. The location of the caustic is marked with a star.

sudden removal of a saddle point due to a smooth change in the geometry of the exponent (F)
caused by a continuous variation of some parameter (in the present case x). Later we shall see
that this phenomenon plays an important role in the correct determination of �sc, the regular
semiclassical wavefunction.

5.6. Regular approximation

Now we will show that the discrepancy between the exact and semiclassical results in
figure 7(d) is indeed due to the caustic located between families I and II. We note that
in that figure the region where the semiclassical formula fails is given approximately by
1.4 < x < 2.0. This interval in the position x corresponds to the intervals in the α–β plane
shown in figure 11 with thick lines, along with the location of the caustic, represented by a
star. From this panel, it is clear that the spurious effects introduced in the bare semiclassical
approximation are caused by the presence of the caustic. We can also verify that the
contribution of WIII is not affected by the presence of any of the four caustics. Furthermore,
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Figure 12. (a) Probability densities for T = T = 1.33 (see figure 7(d)). The corrected
semiclassical result (full line) is very close to the exact one (dashed line). The ‘bare semiclassical’
result is also shown with a dotted–dashed line. Part (b) shows the modulus of the correction factor
χ as a function of x for families I and II.

the distance between the families has the same magnitude of B−1/3, so we apply formula
(4.18) only to the contributions of WI and WII, the contribution of the third family remaining
unchanged. To apply equation (4.18), we need to calculate ζ = A1/2/B1/3. For the smooth
wall, we get the explicit expressions

A = 1

2h̄T (p′
0T + x ′

0)

[
(p′

0T + x ′
0)(1 + ikT ) − 2T 2

x ′3
0

]
, (5.21)

and

B = T (3p′
0T + 4x ′

0)

h̄x ′4
0 (p′

0T + x ′
0)

2
. (5.22)

Figure 12(a) shows the results obtained with the corrected formula (full line). The ‘bare
semiclassical’ (dotted–dashed line) and quantum mechanical (dashed line) results are also
displayed. We have used the numerical routines in [Amo01] for the computation of the Airy
functions. The improvement obtained with equation (4.18) is very significant, specially where
formula (5.15) causes a nonphysical increase in the probability density. The normalization
of the wavefunction with the corrected formula becomes N ≈ 1.003. As expected, far from
this region both semiclassical formulae give very similar results. This is due to the property
(4.20), which can be seen to hold in figure 12(b) where we plot the modulus of χ as a function
of x. Note that for WI the correction factor rapidly tends to unity, while for WII there is a
saturation around |χ | ≈ 0.94. This is because WII occupies a small region in the vicinity
of the caustic. So, for this family, even points that are mapped into x � 1 are close to the
caustic in the w-plane. It is worth noting that the discontinuity introduced by the removal of
WII is virtually cancelled by the discontinuity that comes from the change in the type of Airy
function entering in the calculation of χ for WI. This might look mysterious at first glance,
but it is another manifestation of the same Stokes phenomenon we studied in the last section.
Since χ is a local correction, in order to choose the proper contour out of the six possibilities
±Cj it is necessary to analyse the steepest descent lines in the vicinities of the saddle point
I (for which χ presents the discontinuity) and compare them to the curves Cj that arise from
the expansion of F. In figure 13, we plot the expanded function −Im[F ], as given by (4.7),
from which we can infer the positions of Cj relative to the relevant steepest descent contours.
The discontinuity of χ for the family I can now be understood. Before the removal of II the
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Figure 13. Contour plot of the third-order expansion of −Im[F ]. The contours Cj are shown
together with the steepest descents around the saddle point I. The removal of DIIb leads to the
transition −C2 → C1. Darker regions correspond to larger positive values and lighter regions to
larger negative values.

contour in the neighbourhood of I is DIIb + DIa + DIb (see figures 9(b) and 13) that is clearly
deformable into C3 + C1 which, by Cauchy’s integral theorem, is equivalent to −C2. When II
is eliminated DIIb is not a valid contour and only DIa + DIb remains as the correct contour
in the vicinity of I, being deformable into C1. This explains why the change in the contour of
the Airy function for family I coincides with the removal of family II.

It is important to note that the consistency condition (4.20) imposes a limitation to the
validity of the expression (4.18). This condition says that χ → 1 as ζ → ∞. So, if |A| � 1,
i.e., if the caustics are far from the relevant region, the correction must be negligible.
However, we must note that ζ → ∞ also if B ∝ F ′′′ → 0, which not necessarily occurs far
from the caustics. Therefore, expression (4.18) becomes ill defined at the points where A = 0
and B = 0 simultaneously. These points correspond to higher order caustics, causing the
semiclassical formula (4.18) to fail in their neighbourhood. For the system we are studying,
there is one point in which B = 0 (w �= −2.0) whose coordinates are

α = − q + 3pT/4

1 + (3kT /4)2
and β = 2kT

4

q + 3pT/4

1 + (3kT /4)2
. (5.23)

For T = 0 it coincides again with the singular point w = −q. For T → ∞, it tends towards
w = (0, 2p/3k) and does not seem to affect the results very much.

6. Concluding remarks

The semiclassical propagation of Gaussian wave packets with complex trajectories involves
the calculation of multiple classical paths satisfying some specific boundary conditions. In
between these several trajectories there are phase space caustics, special points at which
the semiclassical formula diverges. Although these points do not generally lie on the paths
entering in the semiclassical formula, their effect might be important, causing spurious peaks
in the propagated wave packet.

In this, paper we have derived an improved third-order semiclassical expression for the
propagation of Gaussian wave packets that is well behaved in the vicinity of these phase space
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caustics. Its application, though perhaps less general, is simpler than that of the uniform
approximation. The regular approximation can be written as the product of a correction
function χ by the usual second-order semiclassical formula ψsc. This reduces the problem
to the determination of χ , which involves the Airy function (or the associated functions f2

and f3) of a complex argument.
Our semiclassical formula was applied to the case of a Gaussian wave packet under

the influence of the repulsive potential V (x) = 1/x2. Unlike most systems previously
studied in the literature, we found a finite number of caustics and contributing trajectories.
This indicates that the proliferation of complex classical solutions, which is not limited to
chaotic dynamics [Rub95], is closely related to propagation in confining potentials. The bare
semiclassical results have proved to be very accurate within the range of applicability of the
theory. However, as the wave packet approaches the smooth wall, i.e., for T close to the time
of the classical turning point, the second-order semiclassical wavefunction starts to display a
nonphysical peak in the probability density. This peak is removed by the application of our
formula, equation (4.18). The calculation of the correction function χ involves the choice
of a path of integration, which might change discontinuously. For the example studied in
section 5 this happens when the steepest descent path associated with a secondary family
of complex trajectories collides with a branch cut that develops in the complex plane. This
collision eliminates the contribution of that family and at the same time changes the contour
of integration of the correction factor χ . The resulting semiclassical wavefunction improves
considerably the bare approximation, achieving very good agreement with the exact quantum
calculations.
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Appendix A. Transitional formula

We now present the corrected formula that arises when the expansion of the effective action
is made around the caustic. The mathematical procedure is similar to that presented in this
paper, thus we only give the main steps towards the final expression. The expansion of F reads

F(x, T ; x ′, 0) ≈ F(x ′
c) + F ′(x ′

c)(x
′ − x ′

c) + 1
6F ′′′(x ′

c)(x
′ − x ′

c)
3, (A.1)

since F ′′(x ′
c) = 0. The transitional semiclassical wavefunction can be expressed as

�(c)
sc (x, T ) = e−iπ/4 exp{iF(x ′

c)/h̄}
b3/2π1/4

√
2πmqp

∫
C

exp

{
iF ′(x ′ − x ′

c) +
iF ′′′

6
(x ′ − x ′

c)
3

}
dx ′. (A.2)

With the transformation of coordinates t = (F ′′′/2h̄)1/3(x ′ − x ′
c), we get

�(c)
sc (x, T ) = e−iπ/4 exp{iF(x ′

c)/h̄}
b3/2π1/4

√
2πmqp

(
2h̄

F ′′′

)1/3

I

[(
2F ′3

h̄2F ′′′

)1/3
]

, (A.3)

where I (s) is given by definition (4.14). In the above expression it is not possible to factorize
ψsc as we did in section 4. Furthermore, �(c)

sc must be calculated on classical trajectories
starting at x ′(0) = x ′

c and ending at x ′(T ) = x and therefore, differently from the regular
formula, the paths that contribute to the determination of �(c)

sc are not the same as the ones
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that enter in the calculation of ψsc. As before, these classical paths must be chosen from a
detailed analysis of the steepest descent contours. Expression (A.3) is expected to give good
results only in the vicinity of the caustics and must be replaced by ψsc out of this region.

Appendix B. Consistency of definitions (4.12)

In this appendix, we study more closely the change of variables given by (4.11) and the choice
of roots made in equations (4.12). We must note that relation (4.11) remains valid for any
choice of roots in equation γ 3 = B. Therefore, we have the following possible relations:

γ = ejB
1/3, σ = A

e2
jB

2/3
, µ = − A2

e4
jB

4/3
= − A2

ejB4/3
; (B.1)

with

ej = e(2π i/3)j for j = 0, +1,−1. (B.2)

In this paper, we have chosen j = 0, see equation (4.12), and we concluded that χ ∝ I (−ζ 4).
However, there must not be a special choice and the physical result must be the same
independently of j . It is easy to show that in the general case we have

χ ∝ e−j I [e−j (−ζ 4)]. (B.3)

There is another modification introduced by a different choice of roots because the angle
between the axes of x ′ and t is given by arg(γ ) since (see the text after equation (4.12))

x ′ = γ −1t + const. (B.4)

Now, suppose we choose the root j = 0 and find, for example, the contour of integration
to be C2. Then we would conclude that χ ∝ f2(−ζ 4). Now, let us take a different choice,
say j = 1. From relation (B.4) we see that this implies an extra counterclockwise (x ′ fixed)
rotation between the axes of x ′ and t by an angle of 2π/3. In this case, we would find
that the integration contour would be C1, which together with relation (B.3) would lead
to χ ∝ e−1f1[e−1(−ζ 4)] = e−2π i/3Ai[e−2π i/3(−ζ 4)] = f2(−ζ 4) [Ble86], which is the
same result obtained with j = 0. This argumentation can be extended to any choice of
j demonstrating that the overall result is independent of this choice.
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